

INDIAN SCHOOL AL WADI AL KABIR

Class XII, Mathematics (2024-25)

WORKSHEET – Vectors AND Three-Dimensional Geometry

	MCQ (1Mark)										
1.	If a line makes angles α , β , γ with the positive direction of coordinate axes, then write the value of $cos2\alpha + cos2\beta + cos2\gamma$.										
	A	1	В		0	С		2	D		-1
2.	Find the angle between the lines $2x = 3y = -z$ and $6x = -y = -4z$. Ans:										
	A	$\frac{\pi}{2}$	В		0	С		π	D		$\frac{\pi}{4}$
3.	Write the coordinates of the point which is the reflection of the point $((\alpha, \beta, \gamma)$ in the XZ plane. Ans: $(\alpha, -\beta, \gamma)$										
	Α (α, -	$(\alpha, -\beta, -\gamma)$ B $(-\alpha, \beta, \gamma)$ C $(\alpha, -\beta, \gamma)$		$(\alpha, -\beta, \gamma)$	D		(α,β,γ)				
4.	vectors $\hat{i} + \hat{j} + \hat{k}$ and $\hat{i} - \hat{2}\hat{j} + \hat{k}$ are:										
	A parallel		B perper		ndicular	С	Unit vectors		D	null vectors	
5.	If \vec{a} , \vec{b} and $(\vec{a} - \sqrt{2}\vec{b})$ are unit vectors, then the angle between \vec{a} and \vec{b} :										
	A	$\frac{2\pi}{3}$			$\frac{\pi}{4}$	С		$\frac{\pi}{2}$	D		$\frac{\pi}{6}$
6.	$ If \vec{a} \times \vec{b} = \vec{a} \cdot \vec{b}$ then the angle between \vec{a} and \vec{b} :										
	A	$\frac{2\pi}{3}$	В		$\frac{\pi}{4}$	С		$\frac{\pi}{2}$	D		$\frac{\pi}{6}$
7.	The two vectors $\hat{j} + \hat{k}$ and $3 \hat{i} - \hat{j} + 4\hat{k}$ represents the two sides AB and AC respectively of a triangle ABC. The length of the median through A:										
	A	$\frac{\sqrt{48}}{2}$	В		$\frac{\sqrt{18}}{2}$	С		$\frac{\sqrt{34}}{2}$	D		$\frac{\sqrt{27}}{2}$
8.	$ If \vec{a} \times \vec{b} = 12, \vec{a} = 8$ and $ \vec{b} = 3$ then the value of $\vec{a} \cdot \vec{b}$										
	A	$12\sqrt{3}$	В		$8\sqrt{3}$			$18\sqrt{3}$			12
9.		The scalar product of the vectors $\hat{i} + \hat{j} + \hat{k}$ with a unit vector along the sum of the vectors $2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\lambda \hat{i} + 2\hat{j} + 3\hat{k}$ is equal to 1. Find the value of λ . Ans: 1									$-5\hat{k}$ and

10.	If $\vec{a} \neq 0$, $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}$ and $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$, then show that $\vec{b} = \vec{c}$						
11.	Find λ when the projection of $\vec{a} = \lambda \hat{i} + \hat{j} + 4\hat{k}$ on $\vec{b} = 2\hat{i} + 6\hat{j} + 3\hat{k}$ is 4 units. Ans: 5						
12.	Show that the four points A(4, 5, 1), B(0, -1, -1), C(3, 9, 4) and D(-4, 4, 4) are coplanar.						
13.	The x coordinate of a point Q on the line joining the points P (2, 2, 1) and R(5, 1, -2) is 4. Find its z coordinate.						
14.	Let $\vec{a} = \hat{\imath} + 4\hat{\jmath} + 2\hat{k}$, $\vec{b} = 3$ $\hat{\imath} - 2\hat{\jmath} + 7\hat{k}$ and $\vec{c} = 2$ $\hat{\imath} - \hat{\jmath} + 4\hat{k}$. Find a vector \vec{d} which is perpendicular to both \vec{a} and \vec{b} and $\vec{c} \cdot \vec{d} = 15$. Ans: $\vec{d} = \left(\frac{5}{3}\right) \left(32\hat{\imath} - \hat{\jmath} - 14\hat{k}\right)$.						
15.	Two adjacent sides of a parallelogram are $2\hat{\imath} - 4\hat{\jmath} - 5\hat{k}$ and $2\hat{\imath} + 2\hat{\jmath} + 3\hat{k}$. Find the two unit vectors parallel to its diagonals. Using diagonal vectors find the area of the parallelogram. Ans: $2\sqrt{101}$						
16.	Find the angle between the vectors $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$ if $\vec{a} = 2\hat{\imath} + \hat{\jmath} + 3\hat{k}$ and $\vec{b} = 3\hat{\imath} + \hat{\jmath} - 2\hat{k}$ and hence find a vector perpendicular to both $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$. Ans: $\frac{\pi}{2}$, $2\hat{\imath} - 26\hat{\jmath} - 10\hat{k}$						
17.	Find the shortest distance between the lines: $\vec{r} = (\hat{i} + 2\hat{j} + \hat{k}) + \lambda(\hat{i} - \hat{j} + \hat{k}) \text{ and}$ $\vec{r} = (2\hat{i} - \hat{j} - \hat{k}) + \mu(2\hat{i} + \hat{j} + 2\hat{k})$ Shortest distance = $\left \frac{-9}{3\sqrt{2}}\right = \frac{3\sqrt{2}}{2}$						
	$\vec{r} = (2i - j - k) + \mu(2i + j + 2k)$ Shortest distance = $ 3\sqrt{2} ^{-1}$ 2						
18.	Find the shortest distance between the following lines:						
	$\overrightarrow{r} = (\hat{i} + 2\hat{j} + 3\hat{k}) + \lambda (2\hat{i} + 3\hat{j} + 4\hat{k})$						
	$\vec{r} = (2\hat{i} + 4\hat{j} + 5\hat{k}) + \mu(4\hat{i} + 6\hat{j} + 8\hat{k}) \qquad \frac{\sqrt{145}}{29}$						
19.	Find the vector and cartesian equations of a line through the point $(1, -1, 1)$ and perpendicular to the lines joining the points $(4, 3, 2)$, $(1, -1, 0)$ and $(1, 2, -1)$, $(2, 1, 1)$.						
	Ans: $\frac{x-1}{10} = \frac{y+1}{-4} = \frac{z-1}{-7}$, $\vec{r} = (\hat{i} - \hat{j} + \hat{k}) + \lambda (10\hat{i} - 4\hat{j} - 7\hat{k})$						
20.	Find the value of k if the following lines are perpendicular: $\frac{x+3}{k-5} = \frac{y-1}{1} = \frac{5-z}{-2k-1}; \frac{x+2}{-1} = \frac{2-y}{-k} = \frac{z}{5}.$ Ans: k= -1						
21.	Find the image of the point $(1, 6, 3)$ in the line $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$. Ans: $(1, 0, 7)$						

Answers(MCQ)

1	D	2	Α	3	С	4	D
5	В	6	В	7	С	8	Α